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ABSTRACT

The concentration of trace elements (TEs) and their risk to narrow-ridged finless porpoises (Neophocaena
asiaeorientalis) are still unclear. The present study determined the concentration of typical TEs in liver, kidney,
and muscle tissues from porpoises in the East China Sea, assessed potential health risk of TEs to porpoises, and
explored the relationship between TE concentration and metallothionein genes (MTs) polymorphism. It was
found that Zn, Cu, Mn, Cd and Hg were highly accumulated in liver, and Cd was highly accumulated in kidney.
The concentrations of Cr, As, Pb and Ni were very low in all three tissues. TE concentrations showed significant
positive correlation with body length, and sexual variation. The levels of most TEs were higher in tissues of por-
poises in Ningbo and Nantong than in Pingtan, which is likely related to the local environment pollution level. The
risk assessment showed that porpoises from Nantong and Ningbo could face health risks due to Hg, As, Cd, Pb,
and Cr exposure. Moreover, two polymorphic sites on the MT4 gene were found to be significantly associated
with increased levels of Hg, Cd, Zn and Mn. Whether these two polymorphic sites are involved in expression of
MTs, or other functional processes, needs further research.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Trace elements (TEs) are present in trace concentrations in various
environmental matrices (Tchounwou et al., 2012). Chronic exposure
to non-essential TEs such as As, Cd, Hg, and Pb even at relatively
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low levels could cause negative impacts on health of humans and aquat-
ic mammals (Llobet et al., 2003; Lavery et al.,2009; Maanan et al., 2015).
Some essential TEs, such as Cu and Zn, at excessive levels could also in-
voke toxicity (Rosa et al., 2008, Jovi¢ and Stankovi¢, 2014).

Small cetaceans have been regarded as indicator species for assessing
nearshore pollution due to their long-term accumulation of TEs and to
being apex predators (Das et al., 2003, Bellante et al., 2012, Caceres-Saez
et al., 2013). The accumulation of TEs has been recorded in >60 cetacean
species in the last three decades (O' Shea, 1999, Lavery et al., 2009,
Caceres-Saez et al., 2013), however, reports about toxic effects on wild ma-
rine mammals are still rare (Lavery et al., 2008), because toxicity studies
on live cetaceans are largely ethically prohibited. The toxicological risk
that TEs pose is an issue that researchers have focused on (Llobet et al.,
2003; Liu et al,, 2015); currently evaluation of the toxicological effects of
pollutants on marine mammals is often estimated via derivation models/
indices (Sample et al., 1996; Hung et al., 2004; Randhawa et al,, 2015).

In order to assess the chronic impact of pollutants on the marine en-
vironment, a suite of biomarkers has been developed. Biomarkers, espe-
cially cytochrome P4501A enzyme induction, acetylcholinesterase
inhibition, DNA integrity and metallothionein induction have received
special attention (Sarkar et al., 2006). For example, the up-regulation
of metallothioneins (MTs) has been correlated with exposure to toxic
metal pollutants, and thus, has proved to be a useful health assessment
tool for mammals (Das et al., 2002; Lavery et al., 2008; Lavery et al.,
2009). However, metallothionein extraction depends on fresh tissue
samples, which is usually impractical for marine mammals. Instead,
we may evaluate protein-relative metallothionein genes. Furthermore,
the single nucleotide polymorphism sites (SNPs) located in functional
genes or near encoding regions could serve as useful tools for correla-
tion analysis between genetic variation and function (Chambers et al.,
2008; Chen et al., 2010). Because different SNPs within metallothionein
genes may present different responses to toxicity of TEs (Kita et al.,
2006), the relationships between TE accumulation and SNPs at MT
gene sites might provide an index of health in cetaceans.

Narrow-ridged finless porpoises (Neophocaena asiaeorientalis, NFPs)
are one of the most common cetacean species in northeastern Asia, in-
cluding Chinese coastal waters (Wang and Reeves, 2012). The East
China Sea (ECS) is a key distribution area of NFPs, but the TEs research
there was deficient (Zhou et al., 1994). The ECS is consistently contami-
nated by land-based pollutants discharged by the Yangtze River and
Qiantang River (Asante et al., 2008; Chen et al., 2014). For instance, the
amounts of anthropogenic heavy metals delivered into the ECS from the
Yangtze River have been increased from 5000 tons in 2002 to
36,200 tons in 2012 (NBO, 2003-2013). This increase highlights the ur-
gent need for research to understand the potential health risks for ECS
NFPs. Outside of ECS, some studies have been conducted in TE levels in
finless porpoises from other Chinese waters, such as Bohai, Hong Kong,
Beibu Gulf (Zhou, 1986; Yang et al., 1988; Zhang et al., 1995; Parsons,
1999; Dong et al,, 2006; Hung et al.,, 2007; Wang et al., 2008; Murphy et
al,, 2010). Therefore, our research would fill the information gap.

Here, we analyze samples of NFPs from ECS to: 1) describe concen-
tration characteristics of TEs in typical tissues; 2) compare pollutant
concentrations among porpoises from three geographical populations;
3) assess the health risk of being exposed to TEs; and 4) explore the cor-
relation between the tissue TEs accumulation and MTs polymorphism.
Furthermore, these populations' ecological parameters such as popula-
tion size, habitat use was unavailable, and the conservation status was
unknown. This study would have important conservation implications
from the perspective of TEs' influence on porpoise health.

2. Materials and methods
2.1. Tissue samples

A total of 61 NFPs with 166 samples (57 kidneys, 56 livers and 53
muscles) were used for TEs determination. All the tissue samples were

collected during 2008-2011 from Nantong, Ningbo, and Pingtan along
coasts of ECS (Table 1, Fig. 1). Most animals died from fisheries bycatch,
and there were no obvious pathological features and fatal injuries were
found. Our samples with an approximately equal sex ratio (female:
male, Nantong 12:11, Ningbo13:11, and Pingtan 7:7). To minimize the
effect of age-related bioaccumulation on TE concentrations (Borrell et
al., 2014), body length was used as a covariate during analysis. In
order to evaluate the risk from consuming contaminated food items
(see Section 2.4), 29 potential prey species (Chen et al., 1979, Zhou et
al., 1993, Barros et al., 2002, Shirakihara et al., 2008, B Chen's unpub-
lished data) were also sampled (Appendix A). For a better population
genetic analysis, additional NFPs samples were also sequenced, conse-
quently 63 and 76 DNA templates were used respectively for MT2 and
MT4 (Table 2). Finally, 56 (Nantong, 23; Ningbo, 19; Pingtan, 14) of
the genetic samples sequenced had TEs quantified.

2.2. Trace element determinations

Determination of trace elements followed the procedures of Tu et al.
(2012). Generally, 0.1978-0.2122 (g) tissue samples were used. Con-
centrations of nine TEs (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb and Zn) were mea-
sured by ICP-MS (Inductively Coupled Plasma Mass Spectrometry,
Aglient 7700, USA) with scandium, germanium and rhodium as the
internal standards. Methodological accuracy was determined by the du-
plicated measurements through blank and sample spikes. The standard
solutions (GSB 04-1767-2004, GSB 04-1729-2004, Aglient) were ob-
tained from the National Center of Analysis and Testing for Nonferrous
Metals and Electronic Materials (NCATN, Beijing, China) for matrix
spikes. The recovery was satisfactory for all the elements of interest
(As: 101.9%, Cd: 101.4%, Cu: 90%, Cr: 94.2%, Hg: 109.9%, Mn: 86%, Ni:
90.4%, Pb: 100.5%, Zn: 122%). Furthermore, the reference material
GBW (E) 080193 (bovine liver) was also utilized to optimize the condi-
tions. Determinations of all tissue trace elements were conducted by
trained professionals in Nanjing Normal University Center for Analysis
& Testing and laboratory of Jiangsu Sinography Testing Company
Limited.

2.3. Test of TEs variation on body length, sex and geographical populations

Relationships between body length or sex and TE accumulation
were analyzed using parametric regression and covariance analysis
(ANCOVA) respectively by the SPSS.

ANCOVA was also used to reveal accumulation difference of
TEs among three geographical populations (Jaric et al., 2011). The age
was not available, so we used body length as covariate in ANCOVA
(Parsons, 1999; Das et al., 2003). The followed pair-wise comparisons
among three populations were conducted by the least significant differ-
ence (LSD) method. Comparing the TE concentrations between tissues,
for each population, non-parametric tests were performed by InStat 3
software (Kruskal-Wallis test followed by Dunn's Multiple Comparisons
Test).

24. Risk assessments indices for toxicity
The risk assessment methods RfD- (Reference Dose) and TRV-

(Toxicity Reference Values) based risk quotient (RQ) were employed
which had been used for cetaceans, (S. chinensis and N. phocaenoides)

Table 1

Sampling information for finless porpoises examined in this study.
Population Total Number (sex) Kidney Liver Muscle
Ningbo 24 13 (female), 11 (male) 24 24 23
Nantong 23 12 (female), 11 (male) 20 19 16
Pingtan 14 7 (female), 7 (male) 13 13 14
Total 61 32 (female), 29 (male) 57 56 53
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Fig. 1. The sampling location of narrow-ridged finless porpoises in East China Sea.

(Hung et al., 2004; Hung et al., 2007). The RQ was calculated by formula
below (Hung et al,, 2007):

RQ = Concentration of TEs in food/MACgp (0rMACrgy)
MACggp (or MACrry) = (RfD (or TRV) x BW x AT)/(IR x FI x EF x ED)

where, most parameter values were obtained from references mentioned
in Hung et al. (2007). The values of RfD and TRV were summarized in
Table 3. AT: averaging time (period over which exposure is averaged in
days), 10,220 days; BW, body weight, we used 40 kg in present study;
IR: gestation rate, 3 kg/day; FI: fraction ingested from contaminated
source, unitless, 0.9; EF: exposure frequency, 365 day/year; ED = expo-
sure duration, 28 years (Hung et al., 2004, 2007).

With respect to the concentration of TEs in food, 50th and 95th per-
centile data was used for RQ. When RQ was larger than unit (value = 1)
it would mean that there was a chance that the contaminant did pose a

risk to the animal (Hung et al., 2004). Further, concentrations of TEs in
some other small cetaceans were also reviewed for comparison.

2.5. DNA extraction and SNPs identification

Metallothionein-2 binds various heavy metals, Metallothione-
in-4 seems to bind zinc and copper (Skutkova et al.,, 2012)
(see in the database GeneCards). The Metallothionein-2 gene
(MT2) and Metallothionein-4 gene (MT4) were chosen to explore
the correlation between genetic polymorphism and TE accumula-
tions in NFPs.

Extraction of genomic DNA from muscle samples followed the stan-
dard protocol described by Sambrook et al. (1989). A fragment of MT2
was amplified by Polymerase chain reaction (PCR) using the following
primers designed according to known sequences from Ensembl (species,
Tursiops truncutus): forward: 5'-ACCCGCCTCTATTCTAAGTT-3’; and re-
verse: 5-TTGTCCTGGTTGCTCTATTT-3'. MT4 forward: 5’-CAGCATC

Table 2
Genetic characteristics of MT2 and MT4 of narrow-ridged finless porpoises in the East China Sea.
Genes  Populations  Number of individuals ~ Number of sequences ~ Number of sites ~ Number of haplotypes (H)  Nucleotide diversity (m) Tajima'sD  Fu'sFs
MT2 Nantong 27 54 4 5 0.001 —1.144 —2.378
Ningbo 17 34 2 3 0.001 —1.444 —0.391
Pingtan 19 38 2 3 0.001 —0.902 —1.088
Total 63 126 6 7 0.001
MT4 Nantong 32 64 5 6 0.002 —0.239 —0.946
Ningbo 19 38 2 2 0.001 1.655 3.232
Pingtan 25 50 3 3 0.001 —0.195 0.797
Total 76 152 6 7 0.001
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Table 3
Parameters for health risk assessment of narrow-ridged finless porpoises in the East China
Sea.

Trace elements  RfD? MACgp" TRVE MACrry”
(ng/g-ww/day)  (ug/g-ww)  (pg/g-ww/day)  (ug/g-ww)

As 0.0003 0.004 0.46 6.14

cd 0.001 0.01 0.30 3.39

cr 0.003 0.04 837.10 11,161.32

Cu 0.02 0.27 465 62.03

Hg 0.0007 0.01 0.40 5.35

Mn 0.14 1.87 26.91 358.86

Ni 0.02 027 12.23 163.12

Pb - - 245 32.62

Zn 03 4 4894 652.47

2 Obtained from Table 3 of Hung et al., 2007, references including Integrated Risk In-
formation System, USEPA (IRIS) (http://www.Epa.gov/iris), ATSDR, 1995, WHO, 1996.

b 40 kg of average body weight from our data were used.

€ Obtained from Sample et al., 1996.

TTCAACCTCCTGTCCATC-3’; and reverse: 5'-CCAACTCCTCGACTAATG-3'.
Eight to16 clones from each individual were sequenced and two for
each individual were picked up. For more accurate identification of
SNPs in MTs, variable sites that appeared >3 times in all clones from the

631

whole population were kept through sequence blasting using the MEGA
5 software (Tamura et al.,, 2011).

In order to investigate the polymorphism of MTs in NFPs, the indexes
of the number of polymorphic sites (S) and haplotypes (h), nucleotide
diversity (m), Fu's Fs value (Fu, 1997) and Tajima's D value (Tajima,
1989) were calculated using DnaSP V5 software package (Librado and
Rozas, 2009). The correlation analysis between SNP genotypes and ac-
cumulation of trace elements in liver, kidney and muscle was performed
using the LSD method and Mann-Whitney U test. A p value < 0.05 was
considered statistically significant.

3. Results
3.1. Accumulation profile of TEs in typical tissues

The results (Fig. 2) indicated that: 1) Concentrations of Zn, Cu and
Mn in liver were significantly higher than in kidney for all populations;
2) Concentrations of Cd, Hg, Mn and Zn were significantly higher in liver
than in muscle for all populations; 3) Concentrations of Cd, Cu and Mn
were significantly higher in kidney than in muscle for all populations;
4) The accumulation level of Pb did not show any difference in three tis-
sues of NFPs between the three populations; 5) Cr was accumulated to
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Fig. 2. The variation of TEs concentration among individuals by sex, geographical populations and tissues.
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Fig. 3. Variance of TEs among three populations.

higher levels in the muscle than in other tissues for the locations
Nangtong and Ningbo, but there was no significance difference in con-
centrations levels between tissues in Pingtan NFPs. The concentration
of As in muscle was significantly lower than that in kidneys and livers
of Pingtan population.

3.2. Difference in accumulation of TEs among populations, by body length
and sex

ANCOVA analysis showed statistically significant differences of TEs
in certain tissues, between the three populations: As (F (2, 53) = 9.014,
p = 0000), Cu (F (2, 53) = 3.540, D= 0036), Hg (F (2, 54) = 6.223,
p = 0.004) and Zn (F (,, 53 = 4.585, p = 0.015) in kidneys; Cr
(F (2 43) = 4946, p = 0.012), Hg (F (5, 52) = 7.548, p = 0.001) and Mn
(F (2,52) = 3.947, p= 0025) in livers; As (F (2,49) = 4350, p= 0018),
Cr (F (2 37) = 3.529, p = 0.040) and Hg (F (5, 45y = 4.581, p = 0.015) in
muscles.

The following LSD test revealed the main difference was between
Ningbo or Nantong and Pingtan (Fig. 3). Between Ningbo and Pingtan,
significantly higher levels of TE concentration were found in Ningbo
NFPs for As, Hg and Zn in kidneys, Hg in livers, As, Cr and Hg in muscles;
Between Nantong and Pingtan, significantly higher levels of TE concen-
tration were found in Nantong NFPs for As and Zn in kidneys, Mn in
livers and As in muscles; Between Ningbo and Nantong populations, sig-
nificantly higher levels of Hg in the three tissues were found in Ningbo
NEPs (See details in Appendix B).

Some TEs in the tissues of each population showed a significant
positive correlation with body length (all p < 0.05), i.e. for the Ningbo
population, Cd (r? = 0.31, p = 0.00), Hg (1 = 0.39, p = 0.00) and Zn
(r = 0.19, p = 0.03) in the liver tissue, Cd (r> = 0.36, p = 0.00)
in the kidney tissue, and Hg (> = 0.43, p = 0.00), Pb (1> = 0.18,p =
0.04), Zn (r* = 0.20, p = 0.03) in the muscle; for the Nantong popula-
tion, As (1> = 0.29, p = 0.02), Cd (1% = 0.41, p = 0.00), Hg (r*> = 0.50,
p = 0.00), Mn (r? = 0.25, p = 0.03) in the liver tissue, Cd (r* = 0.37,
p = 0.00), Hg (r? = 0.50, p = 0.00) in the kidney tissue and Hg (r? =
0.45, p = 0.01) in the muscle tissue; for the Pingtan population, Cd

(r> = 043, p = 0.01), Pb (1> = 0.40, p = 0.02) in the liver tissue and
Hg (1 = 0.62, p = 0.00) in the kidney tissue (Fig. 4).

For Pb (male, 0.46 £ 0.10 pg/g-ww; female, 0.27 4 0.03 pg/g-ww)
and Cd (male, 6.39 + 1.57 pg/g-ww; female, 3.73 + 0.72 pg/g-ww) in
kidneys, male NFPs had significantly higher concentrations than female
NFPs (ANCOVA, p < 0.05) (Fig. 2).

3.3. Risk assessment of TEs

The concentrations and variance of nine TEs among 29 prey species
indicated that the highest concentration for TEs accumulated was for Zn,
followed by concentrations of Cu and Mn (Appendix A). The RfD-based
RQ showed relatively high risk from seven elements (Table 4), i.e. As
presented the potentially highest level of risk, followed by Cd, Cr, and
Cu, and then Hg, Mn, and Zn. TRV-based RQ results indicated low risk
from most of the TEs. But, RQ of As at 95th percentile ranged from 1 to
10 (Table 4) indicating that As level could pose a potential risk to NFPs
(Hung et al.,, 2004).

3.4. MTs polymorphism and its correlation with tissue TEs concentration

A total of 602 bps of MT2, and 885 bps of MT4 were amplified, cloned
and then sequenced. The same numbers of polymorphic sites (S), alleles
(h), nucleotide diversity () were 6, 7, and 0.001 respectively, for both
MT2 and MT4 (Table 2). No significantly negative values for Fu's Fs and
Tajima's D were determined, indicating non-neutral evolution. Based
on SNPs characters of both MT2 and MT4, a total seven alleles (A-G)
were defined. Most alleles, except for allele C, exhibited a much lower
level of allelic frequency (Fig. 5). Allele C was shared in all populations
with the relative high frequency of 12.5% for Nantong, 14% for Ningbo,
and 31.5% for Pingtan (Fig. 5). Allele C has two obvious SNPs of MT4 at
loci 344 and 476 (between exon 2 and 3, at the second intron).

Ningbo, Nantong and Pingtan populations had similar genotype fre-
quency (Fig. 5), i.e. main genotype of 344GG/476AA (58.3%, 60.9%, and
78.6% respectively), secondary genotype of 344GA/476AG (25%, 21.7%,
and 21.4%) and 344AA/476GG (16.7%, 17.4%, and 0%).
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Fig. 4. Regression analysis between concentrations of tissue TEs and body length.
Females and males had also similar frequency of the genotype The SNPs of MT4 at loci 344 and 476 were used as variables for ana-

344GG/476AA (65.6%, 65.5%), 344GA/476AG (25%, 20.1%) and 344AA/ lyzing the correlation between SNPs frequency tissue TEs concentration.
476GG (9.4%, 17%). For females and males, the sexual variation on geno- The types 344 GG/476 AA showed higher frequency in the individuals
type (Fig. 6) was not significant. that accumulated more Zn and Mn in the liver tissue (Fig. 7). A higher
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Table 4
RQ values estimated for the Nantong population using 50th and 95th percentile concen-
tration data.

Contaminants RQ 1-10 10-100 >100 RQ 1-10 10-100 >100

(50th) (95th)
<1 <1
MACrp
As 612.5 32525
cd 15.0 248.3
Cr 533 79.3
Cu 16.9 106.5
Hg 9.6 18.2
Mn 2.0 122
Ni 0.8 26
Zn 4.0 134
Pb
MACrry
As 0.40 2.12
cd 0.05 0.62
Cr 0.0002 0.0003
Cu 0.07 0.46
Hg 0.02 0.03
Mn 0.01 0.06
Ni 0.001 0.004
Zn 0.02 0.08
Pb 0.003 0.01

content of Zn in the kidney and, Cd and Hg in the muscle were closely
related to the rare genotypes 344AA/476GG (Fig. 7).

4. Discussion
4.1. Distributions of trace elements in tissues

Higher concentrations of Zn, Cu, Mn and Hg accumulated in livers
than in kidneys and muscles (Fig. 2), possibly because of the essential
biochemical function of liver (WHO, 1996; Tchounwou et al., 2012),
its role in the immune response and clearance of toxic components
(Jirillo et al., 2002). High concentrations of Cd in kidneys might lead to
more Cd in urinary organs, which was correlated with renal dysfunction
(Babula et al., 2012) and might be harmful to the kidney. On the other
hand, highest Cd concentrations are usually higher in kidney than
other organs (Parsons, 1999; Seixas et al., 2007; Bellante et al., 2012;
Shoham-Frider et al.,, 2014) due to the presence of metal binding pro-
teins (Das et al., 2003).

4.2. Geographical, body length, and sexual variation

Previous work has shown that levels of tissue TEs are affected by
geographical location, sex, and age (Das et al., 2003), and these findings
were supported by the present study. TEs concentrations in Nantong
and Ningbo populations were found to be significantly higher than
that in Pingtan (Fig. 3). Comparing with NFPs along coasts of China,
the general order from high to low in terms of TE level (especially Hg
and Cd) in NFPs, is as follows: Bohai Sea > East China Sea > South of
East China Sea (Appendix B). Actually, TE levels in sediment were also
consistent with the pollution trend, according to comparison of Pb, As,
Ni and Cr content (Table 5).

In our research, toxic TEs (As, Cd, Hg and Pb) were found to be pos-
itively related with body length (Fig. 4). An accumulation of toxic TEs
might reflect a low excretion rate of these TEs (Das et al., 2003). Further-
more, the concentrations of Pb and Cd in kidneys of female porpoises
were statistically significantly lower than in males. This may be related
to the transference of TEs from females to calves via lactation or across
the placenta (Das et al., 2003; Parsons, 2004; Kubota et al., 2005; Yang
et al., 2008; Kamel et al., 2014; Noél et al., 2016).

A

1.04 B Nantong
Pingtan
W Ningbo

Allele A : |JACCCCC
Allele B: |GCCCCC
Allele C: |ACTCCC SNP
Allele D: |ACCCTC tags
Allele E: |[ATCCCC
Allele F: |ACCCCT
Allele G: [ACCTCC

Frequency
ST N
=
—
—

0.0 | (I | |
A B C D E F G
B
1.0 4
(] 1I;I_among
. 8 ingtan
9
=
D
=
=
-5
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.0 A @ Ningbo
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4 | Allele D:| TGAATT tags
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C D E F G
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Fig. 5. Allele frequency and SNP tags for MT2 (A) and MT4 (B) in three populations.

4.3. Risk assessments of TEs

TRV-based and RfD-based RQ results differed in our study (Table 4).
Considering that RfD is generally used for human health risk assessment
and TRV derived from toxicological studies on terrestrial mammals
(Sample et al., 1996; Hung et al., 2004, 2007), the results might not
completely represent the actual risks of TEs on NFPs. However, due to
the high value of RfD-based RQ, As, Cd, Cr, Cu, Hg, Mn and Zn should
be considered as possible contaminants of concern.

Immune and reproductive systems of marine mammals could be im-
pacted by TEs (Reijnders, 1980; Reijnders et al., 1999; Sonne, 2010;
Desforges et al,, 2016). Some threshold levels were preliminarily deter-
mined, e.g. suppression of lymphocyte proliferation was determined to
be 0.002-1.3 pg/g for Hg, 0.1-2.4 pg/g for cadmium in blood (Desforges
etal., 2016). In this study, we noticed concentrations of As in the liver of
Nantong NFPs were close to the level of about 3.767 pg/g-dry weight
(1.017 pg/g- ww), at which the porpoise would be considered to be con-
taminated, in comparison with the hepatic concentration of 1.46 ug/g
dry weight for chronic arsenicosis (Liu et al., 2015). The concentration
of Hg in livers of Ningbo NFPs (31.85 pg/g-ww) were close to that in
Sousa chinensis (35.43 pg/g-ww, Appendix B) reported by Parsons
(1998) who considered the level to be potentially health threatening.
Besides, this level is higher than 20.0 pg/g wet weight level of mercury
above which it was found that harbor porpoises (Phocoena phocoena)
were more susceptible to die of infectious disease (Bennett et al.,
2001). These suggested there might be a potential health risk associated
with exposure to As and Hg (Bennett et al., 2001; Liu et al., 2015; Monk
et al., 2014).

Mean concentration of Pb in liver of Nantong porpoises (Appendix
B) is close to that of S. chinensis from Hong Kong waters (Parsons,
1998; Parsons, 1999) and S. chinensis from Xiamen waters (Chen et al.,
2007), but higher than those of harbor porpoises that died from infec-
tious disease (Bennett et al., 2001).
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Fig. 6. Frequency of three genotypes in females and males.

The concentrations of Cd were at the threshold (20 pg/g-ww), above
which signs of renal dysfunction can occur (Parsons, 1999). Moreover,
levels were higher than those recorded in the 1980s (Yang et al.,
1988). These concentrations may mean that current levels of Pb and
Cd in NFP tissues, may pose a health risk to these animals.

Additionally, the concentrations of Cr, Zn, Mn, Cu, and Ni in tissues of
NFPs were within the general range of TE concentration recorded in ce-
taceans (Appendix B).

4.4. Comparison with other cetaceans

We compared the present research with previous studies on ceta-
ceans (Appendix B). The concentrations of As in all tissues of kidney,
liver and muscle in three populations of Ningbo, Nantong and Pingtan
NFPs were slightly higher than in Sousa chinensis from Xiamen waters
(Chen et al., 2007) and N. phocaenoides from Beibu Gulf (Wang et al.,
2008). The concentrations of Hg in livers of NFPs in Nantong and Ningbo
were similar to those of N. phocaenoides, S. chinensis from Hong Kong
waters (Parsons, 1998, Parsons, 1999, Parsons, 2004,) and T. truncatus
(Parsons and Chan, 2001) but lower than NFPs from the Bohai Sea
(Zhang et al., 1995). Cd concentrations were highest in NFPs from
Bohai Sea than other populations (Yang et al., 1988; Zhou et al., 1994;
Zhang et al., 1995; Dong et al., 2006). Meanwhile concentrations of Cr,
Pb, Cu, Mn, Ni and Zn in the same tissue were similar to other cetacean
populations (Yang et al., 1988; Zhou et al., 1994; Zhang et al., 1995;
Parsons, 1998; Parsons, 1999; Parsons and Chan, 2001; Parsons, 2004;
Chen et al,, 2007; Wang et al., 2008).

4.5. Correlation between MTs polymorphism and tissue TES concentrations

Low genetic polymorphism of MT2 (m = 0.001) and MT4 (m = 0.001)
was found in the present study, and two polymorphic sites were
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Fig. 7. Boxplot of the TEs concentration at different SNP genotypes. The different lowercase letters show significant difference at 0.05 levels.
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Table 5

Mean concentrations of TEs in sediments from the East China Sea, South of the East China Sea and the Bohai Sea. Data are expressed as pg/g dry weight.

Hg Pb Reference

cd

As

Zn

Cu

Mn

Cr

Areas

This study

This study
This study

6.81 + 0.24
19.7 + 1.52
0.04 + 0.01

31.8

0.41 + 0.01
0.15 + 0.02
0.05 + 0.00

0.04

0.2 + 0.04

157.2 + 71.01
33.6 +4.50

223 +£ 033
6.2 4+ 047

7.5 £ 0.51

1439 4+ 6.21
226.5 + 12.81
0.04 + 0.03

19.5 £+ 3.31
249 +1.65
0.16 + 0.05

46.4

101

Ningbo, East China Sea

0.12 4+ 0.02
0.02 + 0.01

6.9 + 0.50

11.2 £+ 0.58

n.d.

Nantong, East China Sea

7.3 £242

83

57.9 4+ 13.39

71.7

442 + 034

19.4
385
13

Pingtan, South of East China Sea

Liaodong Bay, Bohai Sea

Hu et al,, 2013

22,5

Gao and Chen, 2012
Zhao et al., 2008

347

131.1
69
86

40.7

Coastal Bohai Bay, China

222
9.4

0.12

0.03

0.06
0.2

146.2
24

Yangtze River Estuary, East China Sea

Dapeng Bay, Southeast China
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Huang et al., 2005

associated with accumulations of Zn, Mn, Cd and Hg (Fig. 7). Polymor-
phic sites on genes may affect functions of the protein (Kita et al.,
2006), so further research is needed to determine whether these two
polymorphic sites were involved in expression of metallothioneins
and/or other functional process.

The application of population genetics is actually complex
(Przeworski et al., 2005). Zn and Mn were highly accumulated in indi-
viduals with the main genotype (344 GG/476 AA), which may indicate
the adaptation of the homozygous genotype according to a standard se-
lective sweep model (Przeworski et al., 2005). Zn, Hg and Cd were high-
ly accumulated in kidneys and muscles of porpoises with the rare
genotype (344 AA/476 GG), which suggests that higher concentrations
of the toxic metal occur in conjunction with this rare allele (G) (Kayaalti
et al., 2010). This could be explained by a model of directional selection
on standing variation, and that means selection does not always act on a
new allele (Przeworski et al.,, 2005). In this situation, the allele associat-
ed with the adaptive phenotype would be kept at a low frequency, e.g.
0.2% and 3.8% in two marine populations of threespine sticklebacks
(Gasterosteus aculeatus) (Przeworski et al., 2005). Both sites 344 A/G
and 476 G/A found in the present research need to be further verified.

4.6. Conservation implication

The species N. asiaeorientalis has been designated as “Vulnerable” by
the IUCN (Wang and Reeves, 2012), and the Yangtze finless porpoise
sub-species (N. a. asiaeorientalis) has been listed as “Critically Endan-
gered” (Wang et al,, 2013).

To date, important factors that determine conservations status, such
as population size, survival rate, habitat selection, home range, and
threats to porpoises in Ningbo, Nantong, and Pingtan, remain unknown
because a lack of systematic surveys in these regions. Therefore, their
current conservation status remains unknown. The present study
found that all population had low nucleotide diversity of metallothione-
in genes, and that TEs, especially non-essential TEs, were relatively high
in the Ningbo and Nantong populations, and different among popula-
tions. These findings together with the high mortality rates of this spe-
cies (Yang et al., 1999; Wang and Reeves, 2012), in particular, highlight
the need to provide immediate protection for these likely threatened
populations especially the Ningbo and Nantong populations. Moreover,
due to high mortality, possibility induced by fisheries bycatch of the
species, the Ningbo and Nantong populations may be threatened, and
should be protected immediately. It is urgent that surveys and other
studies be conducted to ascertain the true conservation status, and pop-
ulation trends, of Chinese narrow-ridged finless porpoise populations.
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